Fault-tolerant control of a qubit with error correction

By on October 4, 2021 0
  • 1.

    Shor, PW Scheme for Reducing Decoherence in Quantum Computer Memory. Phys. Rev. TO 52, R2493 (1995).

    ADS PubMed Google Scholar

  • 2.

    Knill, E. & Laflamme, R. Theory of quantum error correcting codes. Phys. Rev. TO 55, 900–911 (1997).

    ADS MathSciNet Google Scholar

  • 3.

    Shor, PW Fault tolerant quantum computation. In Proc. 37th Foundation of Computing Conference (1996).

  • 4.

    Knill, E., Laflamme, R. & Zurek, W. Threshold precision for quantum computing. Preprint at https://arxiv.org/abs/quant-ph/9610011 (1996).

  • 5.

    Gottesman, D. Theory of fault tolerant quantum computing. Phys. Rev. TO 57, 127-137 (1998).

    Google Scholar ADS

  • 6.

    Aharonov, D. & Ben-Or, M. Fault tolerant quantum computing with constant error rate. SIAM J. Comput. (2008).

  • 7.

    Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. TO 71, 022316 (2005).

    ADS MathSciNet MATH Google Scholar

  • 8.

    Feynman, RP Quantum Mechanical Computers. Find. Phys. 16, 507-531 (1986).

    ADS MathSciNet Google Scholar

  • 9.

    Abrams, DS & Lloyd, S. Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586-2589 (1997).

    Google Scholar ADS

  • ten.

    Aspuru-Guzik, A., Dutoi, AD, Love, PJ & Head-Gordon, M. Simulated quantum computing of molecular energies. Science 309, 1704-1707 (2005).

    ADS PubMed Google Scholar

  • 11.

    Reiher, M., Wiebe, N., Svore, KM, Wecker, D. & Troyer, M. Elucidation of reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. United States 114, 7555-7560 (2017).

    ADS PubMed PubMed Central Google Scholar

  • 12.

    Shor, PW Polynomial time algorithms for prime number factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303-332 (1999).

    ADS MathSciNet MATH Google Scholar

  • 13.

    Von Burg, V. et al. Quantum computing has improved computational catalysis. Preprint at https://arxiv.org/abs/2007.14460 (2020).

  • 14.

    Gidney, C. & Ekerå, M. How to factor 2048-bit RSA integers in 8 hours using 20 million noisy qubits. Preprint at https://arxiv.org/abs/1905.09749 (2019).

  • 15.

    Gottesman, DE Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology (1997).

  • 16.

    Córcoles, AD et al. Demonstration of a quantum error detection code using a square grating of four superconducting qubits. Nat. Common. 6, 6979 (2015).

  • 17.

    Takita, M., Cross, AW, Córcoles, AD, Chow, JM & Gambetta, JM Experimental demonstration of preparing fault tolerant states with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    ADS PubMed Google Scholar

  • 18.

    Linke, NM et al. Fault tolerant quantum error detection. Sci. Av. 3, e1701074 (2017).

    ADS PubMed PubMed Central Google Scholar

  • 19.

    Harper, R. & Flammia, ST Fault tolerant logic gates in IBM’s quantum experiment. Phys. Rev. Lett. 122, 080504 (2019).

    ADS PubMed Google Scholar

  • 20.

    Andersen, CK et al. Detection of repeated quantum errors in a surface code. Nat. Phys. 16, 875-880 (2020).

    Google Scholar

  • 21.

    Cory, DG et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152-2155 (1998).

    Google Scholar ADS

  • 22.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602-605 (2004).

    ADS PubMed Google Scholar

  • 23.

    Schindler, P. et al. Correction of experimental repetitive quantum errors. Science 332, 1059-1061 (2011).

    ADS PubMed Google Scholar

  • 24.

    Reed, MD et al. Realization of a three-qubit quantum error correction with superconducting circuits. Nature 482, 382-385 (2012).

    ADS PubMed Google Scholar

  • 25.

    Riste, D. et al. Detection of bit flipping errors in a logical qubit using stabilizer measurements. Nat. Common. 6, 6983 (2015).

    Google Scholar

  • 26.

    Kelly, J. et al. State conservation by detection of repetitive errors in a superconducting quantum circuit. Nature 519, 66-69 (2015).

    ADS PubMed Google Scholar

  • 27.

    Gong, M. et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. Preprint at https://arxiv.org/abs/1907.04507 (2019).

  • 28.

    Nigg, D. et al. Quantum calculations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS MathSciNet PubMed MATH Google Scholar

  • 29.

    Luo, YH et al. Quantum teleportation of physical qubits into logical code spaces. Preprint at https://arxiv.org/abs/2009.06242 (2020).

  • 30.

    Heeres, RW et al. Implementation of a universal gate fixed on a logical qubit encoded in an oscillator. Nat. Common. 8, 94 (2017).

    Google Scholar

  • 31.

    Flühmann, C. et al. Encoding of a qubit in a mechanical trapped ion oscillator. Nature 566, 513-517 (2019).

    ADS PubMed Google Scholar

  • 32.

    Ofek, N. et al. Extending the life of a quantum bit with error correction in superconducting circuits. Nature 536, 441-445 (2016).

    ADS PubMed Google Scholar

  • 33.

    Campagne-Ibarcq, P. et al. Quantum error correction of a coded qubit in the gate states of an oscillator. Nature 584, 368-372 (2020).

    Google Scholar PubMed

  • 34.

    de Neeve, B., Nguyen, TL, Behrle, T. & Home, J. Error correction of a logic gate state qubit by dissipative pumping. Preprint at https://arxiv.org/abs/200.09681 (2020).

  • 35.

    Wilhelm Maunz, PL High Optical Access Trap 2.0 Report # SAND2016-0796R (Sandia National Laboratories, 2016).

  • 36.

    Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 563, 63-66 (2016).

    Google Scholar ADS

  • 37.

    Wright, K. et al. Comparative analysis of an 11-qubit quantum computer. Nat. Common. ten, 5464 (2019).

    Google Scholar

  • 38.

    Bacon, D. Quantum error correction subsystem operators for self-corrected quantum memories. Phys. Rev. TO 73, 012340 (2006).

    Google Scholar ADS

  • 39.

    Aliferis, P. & Cross, AW Fault tolerance of the subsystem with the Bacon-Shor code. Phys. Rev. Lett. 98, 220502 (2007).

    ADS PubMed Google Scholar

  • 40.

    Debroy, DM, Li, M., Huang, S. & Brown, KR Logical performance of 9-qubit compass codes in ion traps with crosstalk errors. Quantum Sci. Technol. 5, 034002 (2020).

    Google Scholar ADS

  • 41.

    Li, M., Miller, D. & Brown, KR Direct measurement of Bacon-Shor code stabilizers. Phys. Rev. TO 98, 050301 (2018).

    Google Scholar

  • 42.

    Terhal, BM Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307-346 (2015).

    ADS MathSciNet Google Scholar

  • 43.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Maths. Phys. 43, 4452–4505 (2002).

    ADS MathSciNet MATH Google Scholar

  • 44.

    Li, M., Miller, D., Newman, M., Wu, Y. & Brown, KR 2D compass codes. Phys. Tower. 9, 021041 (2019).

    Google Scholar

  • 45.

    Reichardt, BW The quantum universality of the distillation of magical states applied to CSS codes. Inf. quantum Process. 4, 251-264 (2005).

    MathSciNet MATH Google Scholar

  • 46.

    Lidar, DA, Chuang, IL & Whaley, KB Non-decoherent subspaces for quantum computation. Phys. Rev. Lett. 81, 2594-2597 (1998).

    Google Scholar ADS

  • 47.

    Kielpinski, D et al. A quantum memory without decoherence using trapped ions. Science 291, 1013-1015 (2001).

    ADS PubMed Google Scholar

  • 48.

    Hu, J., Liang, Q., Rengaswamy, N. & Calderbank, R. Attenuation of coherent noise by balancing weight-2z stabilizers. Preprint at https://arxiv.org/abs/2011.00197 (2020).

  • 49.

    Eastin, B. & Knill, E. Restrictions on sets of transversely encoded quantum gates. Phys. Rev. Lett. 102, 110502 (2009).

    ADS PubMed Google Scholar

  • 50.

    Cetina, M. et al. Quantum gates on individually addressed atomic qubits subjected to noisy transverse motion. Preprint at https://arxiv.org/abs/2007.06768 (2020).

  • 51.

    Kielpinski, D., Monroe, C. & Wineland, DJ Architecture for a Large Scale Ion Trap Quantum Computer. Nature 417, 709-711 (2002).

    ADS PubMed Google Scholar

  • 52.

    Home, JP et al. Complete set of methods for the evolutionary processing of quantum information by ion traps. Science 325, 1227-1230 (2009).

    ADS MathSciNet PubMed MATH Google Scholar

  • 53.

    Pino, JM et al. Demonstration of quantum computing architecture with trapped ions QCCD. Preprint at https://arxiv.org/abs/2003.01293 (2020).

  • 54.

    Brown, KR, Harrow, AW and Chuang, IL Arbitrarily Accurate Composite Pulse Sequences. Phys. Rev. TO 70, 052318 (2004).

    Google Scholar ADS

  • 55.

    Mølmer, K. & Sørensen, A. Multiparticulate entanglement of hot-trapped ions. Phys. Rev. Lett. 82, 1835-1838 (1999).

    Google Scholar ADS

  • 56.

    Maslov, D. Basic circuit compilation techniques for an ion trap quantum machine. New J. Phys. 19, 023035 (2017).

    Google Scholar ADS


  • Source link